Caption: Left: High levels of the toxic ataxin-1 protein have destroyed nerve cells in the cerebellum of a mouse, causing a severe disease. Right: Here researchers have genetically blocked the genes that normally produce high levels of ataxin-1. This prevents the disease from developing and keeps the brain healthy.

Credit: Harry Orr, Department of Laboratory Medicine and Pathology, University of Minnesota

With our aging population, more people are developing neurodegenerative disorders like Alzheimer’s and Parkinson’s disease. We currently don’t know how to prevent or cure these conditions, and their increasing prevalence not only represents a tragedy for affected individuals and their families, but also a looming public health and economic crisis.

Even though neurodegenerative diseases have varied roots—and affect distinct cell types in different brain regions—they do share something in common. In most of these disorders, we see some type of toxic protein accumulating in the brain. It’s as if the brain’s garbage disposal system is blocked, letting the waste pile up. In Huntington’s disease, huntingtin is the disease-causing protein. In spinocerebellar ataxia, it’s the ataxins. In Alzheimer’s, it’s beta-amyloid; in Parkinson’s, it’s α-synuclein. When garbage builds up in your kitchen, it’s a bad situation. When it’s in your brain, the consequences are deadly.

PureMadi1.jpgPureMadi, a nonprofit University of Virginia organization, will introduce a new invention – a simple ceramic water purification tablet – during its one-year celebration event Friday from 7 to 11 p.m. at Alumni Hall.

Called MadiDrop, the tablet – developed and extensively tested at U.Va. – is a small ceramic disk impregnated with silver or copper nanoparticles. It can repeatedly disinfect water for up to six months simply by resting in a vessel where water is poured. It is being developed for use in communities in South Africa that have little or no access to clean water.

“Madi” is the Tshivenda South African word for water. PureMadi brings together U.Va. professors and students to improve water quality, human health, local enterprise and quality of life in the developing world. The organization includes students and faculty members from engineering, architecture, medicine, nursing, business, commerce, economics, anthropology and foreign affairs.

During the past year, PureMadi has established a water filter factory in Limpopo province, South Africa, employing local workers. The factory produced several hundred flowerpot-like water filters, according to James Smith, a U.Va. civil and environmental engineer who co-leads the project with Dr. Rebecca Dillingham, director of U.Va.’s Center for Global Health.

With seed money from the National Science Foundation, bioengineers from Stanford and UC-Berkeley, are ramping up efforts to characterize thousands of molecular players and processes critical to the engineering of microbes, so that eventually researchers can mix and match these “DNA parts” in synthetic organisms to produce new drugs, fuels or chemicals. They’ll do this in a lab in Emeryville, Calif., called BIOFAB.

“Synthetic biology has the potential to make the engineering of biology much easier and more affordable. Via the BIOFAB we will help ensure that the public’s investments and interests in the next generation of biotechnology return the greatest benefits,” said co-director Drew Endy, PhD, an assistant professor in Stanford’s bioengineering department and president of the BioBricks Foundation.

listeriaBy Zenaida Gonzalez Kotala

University of Central Florida Microbiology Professor Keith Ireton has uncovered a previously unknown mechanism that plays an important role in the spread of a deadly food-borne bacterium.

Listeria monocytogenes is a bacterium that can cause pregnant women to lose their fetuses and trigger fatal cases of meningitis in the elderly or people with compromised immune systems. The bacterium has been linked to outbreaks traced to food processing plants in the U.S. and Canada.

On a warm June day at the Martin Luther King, Jr. Academic Middle School in San Francisco, the science classroom buzzes with activity. Students wearing goggles and white lab coats carefully cut open preserved lamb hearts, probing the cavities with gloved fingers. They “ooh” and “ah” when they see that the walls of the left ventricle are thicker than the right. They find the heartstrings – the tendons that connect the valves to the heart muscle. They use scientific terms: “Mine’s necrotic!” declares one student.

science, biology, newsby Cassandra Brooks

Scientists from Stanford University have teamed up with Israeli and Jordanian researchers to protect the Gulf of Aqaba, a strategic waterway whose fragile marine ecosystem is vital to both Israel and Jordan. Participants in the NATO-funded project say they are bridging the Arab-Israeli political divide for the sake of science, peace and environmental conservation.

We have 113 guests and no members online

This news service is provided by Good Samaritan Institute, located in Santa Rosa Beach, Florida.

WE PUBLISH PEER_REVIEWED SCIENCE
GSI is a non-profit dedicated to the advancement of medical research by improving communication among scientists.