biologymath.jpgAn international team of mathematicians has proposed a new solution to understanding a biological puzzle that has confounded molecular biologists.

They have applied a mathematical model to work out the functioning of small molecules known as microRNAs – components of the body akin to the electronics in modern airplanes.

For a long time molecular biologists thought that the major role of RNA in living cells was to serve as a copy of a gene and a template for producing proteins, major cell building blocks. This belief had been changed at the end of 90s when it was found that myriads of RNA molecules are involved in regulating speeds of practically all molecular mechanisms in a cell. These abundant molecules are essential in regulating the speed of protein production– a vital function in    bodily processes, including development, differentiation and cancer. 

Cervical cancer is highly curable when caught early. But in a third of cases, the tumor responds poorly to therapy or recurs later, when cure is much less likely.

Quicker identification of non-responding tumors may be possible using a new mathematical model developed by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The model uses information from magnetic resonance imaging (MRI) scans taken before and during therapy to monitor changes in tumor size. That information is plugged into the model to predict whether a particular case is responding well to treatment. If not, the patient can be changed to a more aggressive or experimental therapy midway through treatment, something not possible now.

Mathematicians at Michigan Technological University have developed powerful new tools for winnowing out the genes behind some of humanity’s most intractable diseases.

With one, they can cast back through generations to pinpoint the genes behind inherited illness. With another, they have isolated 11 variations within genes—called single nucleotide polymorphisms, SNPs or "snips"—associated with type 2 diabetes.

Orly Alterby Daniel J. Vargas

AUSTIN, Texas – A team of scientists, led by a biomedical engineer at The University of Texas at Austin, have demonstrated – for the first time – that mathematical models created from data obtained by a recently developed technology called DNA microarrays, can be used to correctly predict previously unknown cellular mechanisms. This brings biologists a step closer to one day being able to understand and control the inner workings of the cell as readily as NASA engineers plot the trajectories of spacecraft today.

The human brain is made up of 100 billion neurons — live wires that must be kept in delicate balance to stabilize the world’s most magnificent computing organ. Too much excitement and the network will slip into an apoplectic, uncomprehending chaos. Too much inhibition and it will flatline. A new mathematical model describes how the trillions of interconnections among neurons could maintain a stable but dynamic relationship that leaves the brain sensitive enough to respond to stimulation without veering into a blind seizure.

Michael Miller, MDPlastic surgeons are turning to mathematics to take the guesswork out of efforts to ensure that live tissue segments that are selected to restore damaged body parts will have enough blood and oxygen to survive the surgical transfer. 

In the world’s first published mathematical model of tissue transfer, mathematicians have shown that they can use differential equations to determine which tissue segments selected for transfer from one part of the body to another location on the same body will receive the level of  oxygen required to sustain the tissue.

We have 48 guests and no members online

This news service is provided by Good Samaritan Institute, located in Santa Rosa Beach, Florida.

WE PUBLISH PEER_REVIEWED SCIENCE
GSI is a non-profit dedicated to the advancement of medical research by improving communication among scientists.