MIT engineers have created a new polymer film that can generate electricity by drawing on a ubiquitous source: water vapor.

The new material changes its shape after absorbing tiny amounts of evaporated water, allowing it to repeatedly curl up and down. Harnessing this continuous motion could drive robotic limbs or generate enough electricity to power micro- and nanoelectronic devices, such as environmental sensors.


Rechargeable Li-ion batteries are the industry standard for mobile phones, laptop and tablet computers, electric cars, and a range of other devices. While Li-ion batteries have a high energy density and can store large amounts of energy, they suffer from a low power density and are unable to quickly accept or discharge energy. This low power density is why it takes about an hour to charge your mobile phone or laptop battery, and why electric automobile engines cannot rely on batteries alone and require a supercapacitor for high-power functions such as acceleration and braking.

A research team at the National Institute of Standards and Technology (NIST) has quantified the interaction of gold nanoparticles with important proteins found in human blood, an approach that should be useful in the development of nanoparticle-based medical therapies and for better understanding the physical origin of the toxicity of certain nanoparticles.

Nanoparticles show promise as vehicles for drug delivery, as medical diagnostic tools, and as a cancer treatment agent in their own right. Gold nanoparticles, spheres that vary in size between 5 and 100 billionths of a meter in diameter, are especially useful because of the many ways their metal surfaces can be “functionalized” by attaching tailored molecules to perform different tasks in the body. However, treatments require a large number of particles to be injected into the bloodstream, and these could be hazardous if they interact with the body in unforeseen ways.

Single layers of carbon atoms, called graphene sheets, are lightweight, strong, electrically semi-conducting -- and notoriously difficult and expensive to make.

Now, a Cornell research team has invented a simple way to make graphene electrical devices by growing the graphene directly onto a silicon wafer. The work was published online Oct. 27 in the journal Nano Letters.

by John Toon

Converting sunlight to electricity might no longer mean large panels of photovoltaic cells atop flat surfaces like roofs.

Using zinc oxide nanostructures grown on optical fibers and coated with dye-sensitized solar cell materials, researchers at the Georgia Institute of Technology have developed a new type of three-dimensional photovoltaic system. The approach could allow PV systems to be hidden from view and located away from traditional locations such as rooftops.

ANN ARBOR, Mich.—University of Michigan physicists have created the first atomic-scale maps of quantum dots, a major step toward the goal of producing "designer dots" that can be tailored for specific applications.

Quantum dots—often called artificial atoms or nanoparticles—are tiny semiconductor crystals with wide-ranging potential applications in computing, photovoltaic cells, light-emitting devices and other technologies. Each dot is a well-ordered cluster of atoms, 10 to 50 atoms in diameter.

We have 85 guests and no members online

This news service is provided by Good Samaritan Institute, located in Santa Rosa Beach, Florida.

GSI is a non-profit dedicated to the advancement of medical research by improving communication among scientists.