Annette Von Jouanneby Elizabeth Rusch

She was in the water when the epiphany struck. Of course, Annette von Jouanne was always in the water, swimming in lakes and pools as she was growing up around Seattle, and swimming distance freestyle competitively in high-school and college meets. There's even an exercise pool in her basement, where she and her husband (a former Olympic swimmer for Portugal) and their three kids have spent a great deal of time...swimming.

But in December 1995 she was bodysurfing in Hawaii over the holidays. She'd just begun working as an assistant professor of electrical engineering at Oregon State University. She was 26 years old and eager to make a difference—to find or improve upon a useful source of energy, preferably one that wasn't scarce or fleeting or unpredictable or dirty. The sun was going down. The wind was dying. She was bobbing in the swells.

 

"As the sun set, it hit me: I could ride waves all day and all night, all year long," says von Jouanne. "Wave power is always there. It never stops. I began thinking that there's got to be a way to harness all the energy of an ocean swell, in a practical and efficient way, in a responsible way."

Today, von Jouanne is one of the driving forces in the fast-growing field of wave energy—as well as its leading proponent. She will explain to anyone who will listen that unlike wind and solar power, wave energy is always available. Even when the ocean seems calm, swells are moving water up and down sufficiently to generate electricity. And an apparatus to generate kilowatts of power from a wave can be much smaller than what's needed to harness kilowatts from wind or sunshine because water is dense and the energy it imparts is concentrated.

All that energy is also, of course, destructive, and for decades the challenge has been to build a device that can withstand monster waves and gale-force winds, not to mention corrosive saltwater, seaweed, floating debris and curious marine mammals. And the device must also be efficient and require little maintenance.

Still, the allure is irresistible. A machine that could harness an inexhaustible, nonpolluting source of energy and be deployed economically in sufficient numbers to generate significant amounts of electricity—that would be a feat for the ages.

Engineers have built dozens of the machines, called wave-energy converters, and tested some on a small scale. In the United States, waves could fuel about 6.5 percent of today's electricity needs, says Roger Bedard of the Electric Power Research Institute, an energy think tank in Palo Alto, California. That's the equivalent of the energy in 150 million barrels of oil—about the same amount of power that is produced by all U.S. hydroelectric dams combined—enough to power 23 million typical American homes. The most powerful waves occur on western coasts, because of strong west-to-east global winds, so Great Britain, Portugal and the West Coast of the United States are among the sites where wave energy is being developed.

Aside from swimming, von Jouanne's other passion as a youngster was learning how things work. It started with small appliances. An alarm clock broke. She unscrewed the back, fixed the mechanism and put it back together. She was about 8 years old. "That was so exciting for me," she says. She moved on to calculators and then to a computer she bought with money from her paper route. One day, she waited for her parents to leave the house so she could take apart the television and reassemble it before they returned. (Von Jouanne cautions kids not to do as she did: "there is a high-voltage component.")

When her brothers, older by eight and ten years, came home for college breaks, she pored over their engineering textbooks. (An older sister pursued a business degree.) "Reading them confirmed that, yup, this is what I want to do," she recalls.

 

Source: Smithsonian Magazine