- Details
- Parent Category: Imaging
- Category: News
At the Photonics West, the leading international fair for photonics taking place in San Francisco (USA) this week, Nanoscribe GmbH, a spin-off of Karlsruhe Institute of Technology (KIT), presents the world’s fastest 3D printer of micro- and nanostructures. With this printer, smallest three-dimensional objects, often smaller than the diameter of a human hair, can be manufactured with minimum time consumption and maximum resolution. The printer is based on a novel laser lithography method.
“The success of Nanoscribe is an example of KIT’s excellent entrepreneurial culture and confirms our strategy of specifically supporting spin-offs. In this way, research results are transferred rapidly and sustainably to the market,” says Dr. Peter Fritz, KIT Vice President for Research and Innovation. In early 2008, Nanoscribe was founded as the first spin-off of KIT and has since established itself as the world’s market and technology leader in the area of 3D laser lithography.
- Details
- Parent Category: Imaging
- Category: News
Heidelberg scientists study interactions between proteins and DNA in living cells
Using a new measurement technique, Heidelberg researchers have succeeded in tracking interactions between proteins and DNA in the cell nucleus at a resolution of 1/1000 of a second. They were able to measure the binding of highly specialised protein complexes that specifically change the spatial structure of the genetic information, thereby controlling the readout of the DNA information. The work of Dr. Karsten Rippe and his team was carried out at the BioQuant Center of Heidelberg University and the German Cancer Research Center. Their research has demonstrated that the positioning of nucleosomes – complexes of DNA and specialised proteins – is a precisely regulated molecular process. Aberrant regulation can be linked to several types of cancer. The results of these studies were published in the journal PNAS.
Read more: High-speed Measurements of Molecular Motion in the Cell Nucleus
- Details
- Parent Category: Imaging
- Category: News
- Details
- Parent Category: Imaging
- Category: News
As striking as it is, the illusion of depth now routinely offered by 3-D movies is a paltry facsimile of a true three-dimensional visual experience. In the real world, as you move around an object, your perspective on it changes. But in a movie theater showing a 3-D movie, everyone in the audience has the same, fixed perspective — and has to wear cumbersome glasses, to boot.
Despite impressive recent advances, holographic television, which would present images that vary with varying perspectives, probably remains some distance in the future. But in a new paper featured as a research highlight at this summer’s Siggraph computer-graphics conference, the MIT Media Lab’s Camera Culture group offers a new approach to multiple-perspective, glasses-free 3-D that could prove much more practical in the short term.
Instead of the complex hardware required to produce holograms, the Media Lab system, dubbed a Tensor Display, uses several layers of liquid-crystal displays (LCDs), the technology currently found in most flat-panel TVs. To produce a convincing 3-D illusion, the LCDs would need to refresh at a rate of about 360 times a second, or 360 hertz. Such displays may not be far off: LCD TVs that boast 240-hertz refresh rates have already appeared on the market, just a few years after 120-hertz TVs made their debut.
- Details
- Parent Category: Imaging
- Category: News
by Ingfei Chen
Will advances in neuroscience make the justice system more accurate and unbiased? Or could brain-based testing wrongly condemn some and trample the civil liberties of others? The new field of neurolaw is cross-examining for answers.
In August 2008, Hank Greely received an e-mail from an International Herald Tribune correspondent in Mumbai seeking a bioethicist's perspective on an unusual murder case in India: A woman had been convicted of killing her ex-fiancé with arsenic, and the circumstantial evidence against her included a brain-scan test that purportedly showed she had a memory—or "experiential knowledge"—of committing the crime.
Read more: The Court Will Now Call its Expert Witness: the Brain
- Details
- Parent Category: Imaging
- Category: News
Common experience tells us that particular scents of childhood can leave quite an impression, for better or for worse. Now, researchers reporting the results of a brain imaging study online on November 5th in Current Biology, a Cell Press publication, show that first scents really do enjoy a "privileged" status in the brain.
"We found that the first pairing or association between an object and a smell had a distinct signature in the brain," even in adults, said Yaara Yeshurun of the Weizmann Institute of Science in Israel. "This 'etching' of initial odor memories in the brain was equal for good and bad smells, yet was unique to odor." Sounds did not have the same effect, the research showed.