- Details
- Parent Category: Imaging
- Category: Techniques
Lattice light sheet microscopy, a new imaging platform developed at Janelia, lets biologists see 3-D images of subcellular activity in real time.
Over the last decade, powerful new microscopes have dramatically sharpened biologists' focus on the molecules that animate and propel life. Now, a new imaging platform developed by Eric Betzig and colleagues at the Howard Hughes Medical Institute's Janelia Research Campus offers another leap forward for light microscopy. The new technology collects high-resolution images rapidly and minimizes damage to cells, meaning it can image the three-dimensional activity of molecules, cells, and embryos in fine detail over longer periods than was previously possible.
Read more: New Microscope Collects Dynamic Images of the Molecules that Animate Life
- Details
- Parent Category: Imaging
- Category: Techniques
A new tool developed at HHMI's Janelia Research Campus lets scientists permanently mark neurons that are active at a particular time.
A new tool developed at the Howard Hughes Medical Institute's Janelia Research Campus lets scientists shine a light on an animal's brain to permanently mark neurons that are active at a particular time. The tool -- a fluorescent protein called CaMPARI -- converts from green to red when calcium floods a nerve cell after the cell fires. The permanent mark frees scientists from the need to focus a microscope on the right cells at the right time to observe neuronal activity.
Read more: New Fluorescent Protein Permanently Marks Neurons that Fire
- Details
- Parent Category: Imaging
- Category: Techniques
New technique enables nanoscale-resolution microscopy of large biological specimens.
Beginning with the invention of the first microscope in the late 1500s, scientists have been trying to peer into preserved cells and tissues with ever-greater magnification. The latest generation of so-called “super-resolution” microscopes can see inside cells with resolution better than 250 nanometers.
A team of researchers from MIT has now taken a novel approach to gaining such high-resolution images: Instead of making their microscopes more powerful, they have discovered a method that enlarges tissue samples by embedding them in a polymer that swells when water is added. This allows specimens to be physically magnified, and then imaged at a much higher resolution.
Read more: MIT team enlarges brain samples, making them easier to image
- Details
- Parent Category: Imaging
- Category: Optics
WASHINGTON, Feb. 20, 2013— Digital cameras, medical scanners, and other imaging technologies have advanced considerably during the past decade. Continuing this pace of innovation, an Austrian research team has developed an entirely new way of capturing images based on a flat, flexible, transparent, and potentially disposable polymer sheet. The team describes their new device and its possible applications in a paper published today in the Optical Society’s (OSA) open-access journal Optics Express.
The new imager, which resembles a flexible plastic film, uses fluorescent particles to capture incoming light and channel a portion of it to an array of sensors framing the sheet. With no electronics or internal components, the imager’s elegant design makes it ideal for a new breed of imaging technologies, including user interface devices that can respond not to a touch, but merely to a simple gesture.
Read more: New Imaging Device That Is Flexible, Flat, and Transparent
- Details
- Parent Category: Imaging
- Category: News
At the Photonics West, the leading international fair for photonics taking place in San Francisco (USA) this week, Nanoscribe GmbH, a spin-off of Karlsruhe Institute of Technology (KIT), presents the world’s fastest 3D printer of micro- and nanostructures. With this printer, smallest three-dimensional objects, often smaller than the diameter of a human hair, can be manufactured with minimum time consumption and maximum resolution. The printer is based on a novel laser lithography method.
“The success of Nanoscribe is an example of KIT’s excellent entrepreneurial culture and confirms our strategy of specifically supporting spin-offs. In this way, research results are transferred rapidly and sustainably to the market,” says Dr. Peter Fritz, KIT Vice President for Research and Innovation. In early 2008, Nanoscribe was founded as the first spin-off of KIT and has since established itself as the world’s market and technology leader in the area of 3D laser lithography.
- Details
- Parent Category: Imaging
- Category: Medical
Scientists at The University of Manchester have developed a camera that can be used to take powerful three dimensional colour X-ray images, in near real-time, without the need for a synchrotron X-ray source.
Its ability to identify the composition of the scanned object could radically improve security screening at airports, medical imaging, aircraft maintenance, industrial inspection and geophysical exploration.
Read more: 3D colour X-Ray imaging improved for identifying contraband, corrosion or cancer