AncientBiotics Cropped 445x124A one thousand year old Anglo-Saxon remedy for eye infections which originates from a manuscript in the British Library has been found to kill the modern-day superbug MRSA in an unusual research collaboration at The University of Nottingham.

Dr Christina Lee, an Anglo-Saxon expert from the School of English has enlisted the help of microbiologists from University’s Centre for Biomolecular Sciences to recreate a 10th century potion for eye infections from Bald’s Leechbook an Old English leatherbound volume in the British Library, to see if it really works as an antibacterial remedy. The Leechbook is widely thought of as one of the earliest known medical textbooks and contains Anglo-Saxon medical advice and recipes for medicines, salves and treatments.

Are viruses alive? Viruses have found an ingenious way of perpetuating themselves, without ever being truly alive.

bacteriophage T4

Unlike most living organisms, they can be frozen or boiled, but then explode into life if conditions are right. Viruses enter other organisms' cells and take over their machinery, making copies of themselves, but they can't "reproduce" on their own.

Using a combination of imaging techniques, researchers have determined that some viruses infect cells by piercing the cells' outer membranes, digesting the walls and injecting virus DNA into the cell. These findings explain how viruses invade cells and offer a new way to deliver genes and drugs directly into cells.

The study, funded by the National Science Foundation's (NSF) Biological Sciences Directorate, was led by researchers Michael Rossman of Purdue University and Vadim Mesyanzhinov of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry in Moscow. The team studied the structure of the bacteriophage T4—a virus that attacks the familiar microbe E. coli.

Study yields insight into generating antibodies that target different strains of HIV.

MIT HIV Vaccine 01 0

Through an investigation of a fundamental process that guides the maturation of immune cells, researchers have revealed new insights into possible ways to vaccinate people to generate potent antibodies of the type that are predicted to offer protection against diverse strains of the highly mutable HIV.

The findings, described this week in the journal Cell, suggest that sequentially administering several different forms of a potential HIV vaccine could stimulate a stronger immune response than delivering a cocktail of these variants all at once. The study also sheds new light on a fundamental process of immune-cell development known as “affinity maturation.”

Fifteen years ago, the proteins that Princeton neuroscientist Lisa Boulanger has staked her career on weren't even thought to exist in the brain. Known as major histocompatibility complex class I, or MHCI proteins, they are essential for an adaptive immune response. The thought at the time was that the brain was an area of the body where the immune system wasn't active. It simply wouldn't need MHCs.

 stemcell_Adhesive.jpgA new separation process that depends on an easily-distinguished physical difference in adhesive forces among cells could help expand production of stem cells generated through cell reprogramming. By facilitating new research, the separation process could also lead to improvements in the reprogramming technique itself and help scientists model certain disease processes.

The reprogramming technique allows a small percentage of cells – often taken from the skin or blood – to become human induced pluripotent stem cells (hiPSCs) capable of producing a wide range of other cell types. Using cells taken from a patient’s own body, the reprogramming technique might one day enable regenerative therapies that could, for example, provide new heart cells for treating cardiovascular disorders or new neurons for treating Alzheimer’s disease or Parkinson’s disease.

 stemcell_ElectronMicrograph.jpgThe parasites that cause schistosomiasis, one of the most common parasitic infections in the world, are notoriously long-lived. Researchers have now found stem cells inside the parasite that can regenerate worn-down organs, which may help explain how they can live for years or even decades inside their host.

Schistosomiasis is acquired when people come into contact with water infested with the larval form of the parasitic worm Schistosoma, known as schistosomes. Schistosomes mature in the body and lay eggs that cause inflammation and chronic illness. Schistosomes typically live for five to six years, but there have been reports of patients who still harbor parasites decades after infection.

We have 243 guests and no members online

This news service is provided by Good Samaritan Institute, located in Santa Rosa Beach, Florida.

GSI is a non-profit dedicated to the advancement of medical research by improving communication among scientists.