- Details
- Parent Category: Microbiology
- Category: Research
An international team of scientists has rescued visual function in laboratory rats with eye disease by using cells similar to stem cells. The research shows the potential for stem cell-based therapies to treat age-related macular degeneration in humans.
A team led by Dennis Clegg, of UC Santa Barbara, and Pete Coffey, of University College London (UCL), published their work in two papers, including one published this week in the journal PloS One. The first paper was published in the October 27 issue of the journal Stem Cells.
Read more: UCSB, UCL Scientists Rescue Vidual Function in Rats Using Induced Pluripotent Stem Cells
- Details
- Parent Category: Microbiology
- Category: News
by Anne Trafton
Exploiting the recently discovered mechanism could allow biologists to develop disease treatments by shutting down specific genes.
Science and technology journalists pride themselves on the ability to explain complicated ideas in accessible ways, but there are some technical principles that we encounter so often in our reporting that paraphrasing them or writing around them begins to feel like missing a big part of the story. So in a new series of articles called "Explained," MIT News Office staff will explain some of the core ideas in the areas they cover, as reference points for future reporting on MIT research.
- Details
- Parent Category: Microbiology
- Category: Medical
A researcher at Iowa State University has discovered how a group of proteins from plant pathogenic bacteria interact with DNA in the plant cell, opening up the possibility for what the scientist calls a "cascade of advances."
Adam Bogdanove, associate professor in plant pathology, was researching the molecular basis of bacterial diseases of rice when he and Matthew Moscou, a student in the bioinformatics and computation biology graduate program, discovered that the so-called TAL effector proteins injected into plant cells by strains of the bacterium Xanthomonas attach at specific locations to host DNA molecules.
Read more: Iowa State University Researcher Discovers Key to Vital DNA, Protein Interaction
- Details
- Parent Category: Microbiology
- Category: Research
A University of Colorado at Boulder team has developed the first atlas of bacterial diversity across the human body, charting wide variations in microbe populations that live in different regions of the body and which aid us in physiological functions that contribute to our health.
The study showed humans carry "personalized" communities of bacteria around that vary widely from our foreheads and feet to our noses and navels, said CU-Boulder's Rob Knight, senior author on the paper published in the Nov. 6 issue of Science Express. The researchers found unexpectedly wide variability in bacterial communities from person to person in the study, which included nine healthy volunteers and which targeted 27 specific sites on the body.
Read more: CU-Boulder Map of Human Bacterial Diversity Shows Wide Interpersonal Differences
- Details
- Parent Category: Microbiology
- Category: News
A chemical culprit responsible for the rapid, mysterious death of phytoplankton in the North Atlantic Ocean has been found by collaborating scientists at Rutgers University and the Woods Hole Oceanographic Institution (WHOI). This same chemical may hold unexpected promise in cancer research.
The team discovered a previously unknown lipid, or fatty compound, in a virus that has been attacking and killing Emiliania huxleyi, a phytoplankton that plays a major role in the global carbon cycle.
Read more: Newly Discovered Fat Molecule: An Undersea Killer with an Upside
- Details
- Parent Category: Microbiology
- Category: Research
EAST LANSING, Mich. — A 21-year Michigan State University experiment that distills the essence of evolution in laboratory flasks not only demonstrates natural selection at work, but could lead to biotechnology and medical research advances, researchers said.
Charles Darwin’s seminal Origin of Species first laid out the case for evolution exactly 150 years ago. Now, MSU professor Richard Lenski and colleagues document the process in their analysis of 40,000 generations of bacteria, published this week in the international science journal Nature.
Read more: Time in a Bottle: Scientists Watch Evolution Unfold Over 40,000 Generations