• Home
  • Biology
      • Back
      • Anatomy & Physiology
      • Biotechnology
      • Botany
      • Cell & Molecular
      • News
      • Zoology
  • Cancer
      • Back
      • Detection
      • Diet and Lifestyle
      • Treatments
      • News
      • Research
  • Chemistry
      • Back
      • Environmental
      • General
      • Medicinal
      • Organic
      • Game.Ball Game
  • IT
      • Back
      • Hardware
      • Medical
      • Networking
      • News
      • Security
      • Software & Programming
  • Engineering
      • Back
      • Robotics
      • Bioengineering
      • Chemical
      • Civil
      • Environmental
      • Materials
      • News
      • Solar
  • Imaging
      • Back
      • Medical
      • News
      • Optics
      • Techniques
  • Mathematics
      • Back
      • Applications
      • Medical
      • News
      • Theories
      • Game.math
  • Microbiology
      • Back
      • Medical
      • News
      • Research
      • Stem Cells
  • Nanotech
      • Back
      • Medical
      • Nanoelectronics
      • Nanomaterials
      • News

A New Cloaking Method

Details
Parent Category: Mathematics
Category: Applications

This is not a 'Star Trek' or 'Harry Potter' Story

University of Utah mathematicians developed a new cloaking method, and it's unlikely to lead to invisibility cloaks like those used by Harry Potter or Romulan spaceships in "Star Trek." Instead, the new method someday might shield submarines from sonar, planes from radar, buildings from earthquakes, and oil rigs and coastal structures from tsunamis.

"We have shown that it is numerically possible to cloak objects of any shape that lie outside the cloaking devices, not just from single-frequency waves, but from actual pulses generated by a multi-frequency source," says Graeme Milton, senior author of the research and a distinguished professor of mathematics at the University of Utah.

Read more: A New Cloaking Method

Echoes of the Birth of the Universe

Details
Parent Category: Mathematics
Category: Applications

Results of cosmic analysis set new limits on gravitational waves that could have come from the Big Bang, and begin to constrain current theories about universe formation

An investigation by the LIGO (Laser Interferometer Gravitational-Wave Observatory) Scientific Collaboration, designed and operated by Caltech and MIT, and the Virgo Collaboration, has significantly advanced our understanding of the early evolution of the universe.

Read more: Echoes of the Birth of the Universe

Math Model Accurately Mimics Cell Division In Carbon-cycling Bacterium

Details
Parent Category: Mathematics
Category: Applications

Scientists from the Department of Biological Sciences and the Virginia Bioinformatics Institute (VBI) at Virginia Tech have developed a quantitative, mathematical model of DNA replication and cell division for the bacterium Caulobacter crescentus. C. crescentus, an alpha-proteobacterium that inhabits freshwater, seawater and soils, is an ideal organism for genetic and computational biology studies due to the wealth of molecular information that has been accumulated by researchers. It also plays a key role in global carbon cycling in its natural environment.

Read more: Math Model Accurately Mimics Cell Division In Carbon-cycling Bacterium

Mathematics Reveals Inner Workings of Potassium Pipeline

Details
Parent Category: Mathematics
Category: Applications

Many of the body's cells need a reliable flow of potassium to perform their daily tasks. One key to potassium flow, now revealed to researchers, appears to be the energetic effect of a pool of approximately 50 water molecules and four protein spirals that sit in the middle of a narrow channel embedded within cell membranes.

Read more: Mathematics Reveals Inner Workings of Potassium Pipeline

'Bacterial Computers': Genetically Engineered Bacteria Have Potential To Solve Complicated Mathematical Problems

Details
Parent Category: Mathematics
Category: Applications

US researchers have created 'bacterial computers' with the potential to solve complicated mathematics problems. The findings of the research demonstrate that computing in living cells is feasible, opening the door to a number of applications. The second-generation bacterial computers illustrate the feasibility of extending the approach to other computationally challenging math problems.

Read more: 'Bacterial Computers': Genetically Engineered Bacteria Have Potential To Solve Complicated...

Computational Biology

Details
Parent Category: Mathematics
Category: Applications

Computational biology and bioinformatics develop and apply techniques from applied mathematics, statistics, computer science, physics and chemistry to the study of biological problems, from molecular to macro-evolutionary. By drawing insights from biological systems, new directions in mathematics and other areas may emerge.

Read more: Computational Biology

  1. Making Waves in the Brain
  2. Boundary Conditions for the Moving Contact Line Problem

Page 3 of 4

  • 1
  • 2
  • 3
  • 4
© 2025
Powered by Gantry Framework