The DARPA Robotics Challenge
- Details
- Parent Category: Engineering
- Category: Robotics
The DRC is a competition of robot systems and software teams vying to develop robots capable of assisting humans in responding to natural and man-made disasters.
Will you be there when the robots face off? Twenty-five of the top robotics organizations in the world will gather to compete for $3.5 million in prizes as they attempt a simulated disaster-response course. The event is free to attend and open to the public. It takes place at Fairplex (home of the LA County Fair) in Pomona, California, just east of downtown Los Angeles.
It was designed to be extremely difficult. Participating teams, representing some of the most advanced robotics research and development organizations in the world, are collaborating and innovating on a very short timeline to develop the hardware, software, sensors, and human-machine control interfaces that will enable their robots to complete a series of challenge tasks selected by DARPA for their relevance to disaster response.
Enlisting the immune system to fight cancer
- Details
- Parent Category: Cancer
- Category: Treatments
Immunotherapy - the enlisting of the immune system to fight cancer - is an exciting new field that has already led to early trials of new treatments. However, these often fail because promising results seen in petri dishes are not translating into successful attacks on real tumors.
In a report on their work in the journal Cancer Cell, senior author Dane Wittrup, a professor in chemical engineering, and colleagues describe how a combination of the two approaches successfully halted a very aggressive type of melanoma in mice. Their idea began as they were investigating how to improve the immune response of an antibody-based therapy using IL-2, a signaling molecule. Making IL-2 hang around longer boosts anti-tumor antibody therapy.
It's a bird, it's a plane, it's a SUPERCONDUCTOR!
- Details
- Parent Category: Computer Science
- Category: Hardware
Research by Professor Yoshihiro Kubozono at Okayama University has potential for innovative applications of solid picene and organic superconductors, graphene and other functional materials.
"We are using chemistry to produce new physics," says Professor Yoshihiro Kubozono at the Department of Chemistry of Okayama University. "Our recent discovery that solid picene—a wide-bandgap semiconducting hydrocarbon—doped with potassium becomes superconducting at 7 K and 18 K is a good example because physicists are investigating the role of alkali dopants in organic compounds. We are the only group in the world focusing on superconducting picene." These results may find applications in the development of superconducting devices that dissipate extremely low energy.
Other areas of research being pursued by Kubozono and his group includes electrostatic carrier doping in two-dimensional materials such as graphene, and liquid ammonia based synthesis of metal intercalated FeSe superconductors. Electrostatic carrier doping enables the control of electrons or holes at the interface between an 'ionic liquid gate' and the underlying material—analogous to the control of carrier channels in semiconducting gated field effect transistors.
Read more: It's a bird, it's a plane, it's a SUPERCONDUCTOR!
Epigenetic Drugs Could be Used to Treat Deadly Pediatric Cancer
- Details
- Parent Category: Cancer
- Category: Treatments
Using brain tumor samples collected from children in the United States and Europe, an international team of scientists found that the drug panobinostat and similar gene regulating drugs may be effective at treating diffuse intrinsic pontine gliomas (DIPG), an aggressive and lethal form of pediatric cancer.
The study, published inNature Medicine, was partially funded by the National Institutes of Health, the Department of Defense, and more than 25 nonprofit foundations devoted to finding cures for childhood brain cancer.
“Our results provide a glimmer of hope for treating this heartbreaking disease,” said Michelle Monje, M.D., Ph.D., assistant professor of neurology and neurological sciences, Stanford University School of Medicine, California, a senior author of the study and a specialist in DIPG. “Caring for DIPG patients drives me to find new ways to treat them.”
DIPG typically attacks children 4 to 9 years of age. Children progressively lose muscle control as the tumor rapidly attacks the pons, a region deep inside the brain that connects the brain to the spinal cord, and is difficult to reach and surgically remove. Despite radiation treatment, children usually survive for about nine months, and less than 1 percent survive longer than five years.
Read more: Epigenetic Drugs Could be Used to Treat Deadly Pediatric Cancer
Page 1 of 13